An Evolutionary Algorithm based Approach to Design Optimization using Evidence Theory
نویسندگان
چکیده
For problems involving uncertainties in design variables and parameters, a bi-objective evolutionary algorithm (EA) based approach to design optimization using evidence theory is proposed and implemented in this paper. In addition to a functional objective, a plausibility measure of failure of constraint satisfaction is minimized. Despite some interests in classical optimization literature, this is the first attempt to use evidence theory with an EA. Due to EA’s flexibility in its operators, non-requirement of any gradient, its ability to handle multiple conflicting objectives, and ease of parallelization, evidence-based design optimization using an EA is promising. Results on a test problem and a couple of engineering design problems show that the modified evolutionary multi-objective optimization (EMO) algorithm is capable of finding a widely distributed trade-off frontier showing different optimal solutions corresponding to different levels of plausibility failure limits. Furthermore, a single-objective evidence based EA is found to produce better optimal solutions than a previously reported classical optimization procedure. The use of a GPU based parallel computing platform demonstrates EA’s performance enhancement around 160 to 700 times in implementing plausibility computations. Handling uncertainties of different types are getting increasingly popular in applied optimization studies and this EA based study should motivate further studies in handling uncertainties.
منابع مشابه
A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملMulti-objective optimization design of plate-fin heat sinks using an Evolutionary Algorithm Based On Decomposition
This article has no abstract.
متن کاملApplying evolutionary optimization on the airfoil design
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملPower System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach
This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011